The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth
نویسندگان
چکیده
Exchange factors for ARF GTPases (ARF-GEFs) regulate vesicle trafficking in a variety of organisms. The Arabidopsis protein GNOM is a brefeldin A (BFA) sensitive ARF-GEF that is required for the proper polar localization of PIN1, a candidate transporter of the plant hormone auxin. Mutations in GNOM lead to developmental defects that resemble those caused by interfering with auxin transport. Both PIN1 localization and auxin transport are also sensitive to BFA. In this paper, we show that GNOM localizes to endosomes and is required for their structural integrity. We engineered a BFA-resistant version of GNOM. In plants harboring this fully functional GNOM variant, PIN1 localization and auxin transport are no longer sensitive to BFA, while trafficking of other proteins is still affected by the drug. Our results demonstrate that GNOM is required for the recycling of auxin transport components and suggest that ARF-GEFs regulate specific endosomal trafficking pathways.
منابع مشابه
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana.
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by ...
متن کاملGNOM/FEWER ROOTS is Required for the Establishment of an Auxin Response Maximum for Arabidopsis Lateral Root Initiation
Lateral root (LR) formation in vascular plants is regulated by auxin. The mechanisms of LR formation are not fully understood. Here, we have identified a novel recessive mutation in Arabidopsis thaliana, named fewer roots (fwr), that drastically reduces the number of LRs. Expression analyses of DR5::GUS, an auxin response reporter, and pLBD16::GUS, an LR initiation marker, suggested that FWR is...
متن کاملPIN auxin efflux carrier polarity is regulated by PINOID kinase-mediated recruitment into GNOM-independent trafficking in Arabidopsis.
The phytohormone auxin plays a major role in embryonic and postembryonic plant development. The temporal and spatial distribution of auxin largely depends on the subcellular polar localization of members of the PIN-FORMED (PIN) auxin efflux carrier family. The Ser/Thr protein kinase PINOID (PID) catalyzes PIN phosphorylation and crucially contributes to the regulation of apical-basal PIN polari...
متن کاملSubcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1.
The directional flow of the plant hormone auxin mediates multiple developmental processes, including patterning and tropisms. Apical and basal plasma membrane localization of AUXIN-RESISTANT1 (AUX1) and PIN-FORMED1 (PIN1) auxin transport components underpins the directionality of intercellular auxin flow in Arabidopsis thaliana roots. Here, we examined the mechanism of polar trafficking of AUX1...
متن کاملFluorescence Imaging-Based Screen Identifies ARF GEF Component of Early Endosomal Trafficking
Endocytic vesicle trafficking is crucial for regulating activity and localization of plasma membrane components, but the process is still poorly genetically defined in plants. Membrane proteins of the PIN-FORMED (PIN) family exhibit polar localization in plant cells and facilitate cellular efflux of the plant hormone auxin, thereby regulating multiple developmental processes. PIN proteins under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 112 شماره
صفحات -
تاریخ انتشار 2003